Part Number Hot Search : 
AAT8660C DTL9503 G3525A BUY69B 2SC4987 FLT007A0 SI7868DP PP2FFXX
Product Description
Full Text Search
 

To Download CA309400 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 T DUC E NT PRO LACEM r at (R) TE ente OLE RE P OBS ENDED upport C om/tsc rsil.c OMM hn cal S REC r TData iSheet.inte w ec NO ww u IL or act o cont -INTERS 8 1-88
CA3094, CA3094A, CA3094B
October 2000 File Number 598.8
30MHz, High Output Current Operational Transconductance Amplifier (OTA)
The CA3094 is a differential input power control switch/amplifier with auxiliary circuit features for ease of programmability. For example, an error or unbalance signal can be amplified by the CA3094 to provide an on-off signal or proportional control output signal up to 100mA. This signal is sufficient to directly drive high current thyristors, relays, DC loads, or power transistors. The CA3094 has the generic characteristics of the CA3080 operational amplifier directly coupled to an integral Darlington power transistor capable of sinking or driving currents up to 100mA. The gain of the differential input stage is proportional to the amplifier bias current (IABC), permitting programmable variation of the integrated circuit sensitivity with either digital and/or analog programming signals. For example, at an IABC of 100A, a 1mV change at the input will change the output from 0 to 100A (typical). The CA3094 is intended for operation up to 24V and is especially useful for timing circuits, in automotive equipment, and in other applications where operation up to 24V is a primary design requirement (see Figures 28, 29 and 30 in Typical Applications text). The CA3094A and CA3094B are like the CA3094 but are intended for operation up to 36V and 44V, respectively (single or dual supply).
Features
* CA3094E, M for Operation Up to 24V * CA3094AT, E, M for Operation Up to 36V * CA3094BT, M for Operation Up to 44V * Designed for Single or Dual Power Supply * Programmable: Strobing, Gating, Squelching, AGC Capabilities * Can Deliver 3W (Average) or 10W (Peak) to External Load (in Switching Mode) * High Power, Single Ended Class A Amplifier will Deliver Power Output of 0.6W (1.6W Device Dissipation) * Total Harmonic Distortion (THD) at 0.6W in Class A Operation 1.4% (Typ)
Applications
* Error Signal Detector: Temperature Control with Thermistor Sensor; Speed Control for Shunt Wound DC Motor * Over Current, Over Voltage, Over Temperature Protectors * Dual Tracking Power Supply with CA3085 * Wide Frequency Range Oscillator * Analog Timer * Level Detector
Ordering Information
PART NUMBER (BRAND) CA3094AT, BT CA3094E, AE CA3094M, BM TEMP. RANGE ( oC) -55 to 125 -55 to 125 -55 to 125 PACKAGE 8 Pin Metal Can 8 Ld PDIP 8 Ld SOIC PKG. NO. T8.C E8.3 M8.15
* Alarm Systems * Voltage Follower * Ramp Voltage Generator * High Power Comparator * Ground Fault Interrupter (GFI) Circuits
Pinouts
CA3094 (PDIP, SOIC) TOP VIEW
EXT. FREQUENCY COMPENSATION OR INHIBIT INPUT DIFFERENTIAL VOLTAGE INPUTS GND (V- IN DUAL SUPPLY OPERATION) 1 2 3 4 8 7 6 5 SINK OUTPUT (COLLECTOR) V+ DRIVE OUTPUT (EMITTER) 2 IABC CURRENT PROGRAMMABLE INPUT (STROBE OR AGC) DIFFERENTIAL VOLTAGE INPUTS 6
CA3094 (METAL CAN) TOP VIEW
SINK OUTPUT (COLLECTOR) EXT. FREQUENCY COMPENSATION OR INHIBIT INPUT 8 1 TAB 7 V+ DRIVE OUTPUT (EMITTER)
3 4
5
GND (V- IN DUAL SUPPLY OPERATION)
IABC CURRENT PROGRAMMABLE INPUT (STROBE OR AGC)
NOTE: Pin 4 is connected to case.
3-1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright (c) Intersil Americas Inc. 2002. All Rights Reserved
CA3094, CA3094A, CA3094B
Absolute Maximum Ratings
Supply Voltage (Between V+ and V- Terminals) CA3094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24V CA3094A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36V CA3094B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44V Differential Input Voltage (Terminals 2 and 3, Note 1). . . . . . . . . 5V DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VInput Current (Terminals 2 and 3) . . . . . . . . . . . . . . . . . . . . . . 1mA Amplifier Bias Current (Terminal 5) . . . . . . . . . . . . . . . . . . . . . . 2mA Average Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA Peak Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mA
Thermal Information
Thermal Resistance (Typical, Note 2) JA ( oC/W) JC (oC/W) PDIP Package . . . . . . . . . . . . . . . . . . . 130 N/A SOIC Package . . . . . . . . . . . . . . . . . . . 170 N/A Metal Can Package . . . . . . . . . . . . . . . 175 100 Maximum Junction Temperature (Metal Can Package). . . . . . . 175oC Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only)
Operating Conditions
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES: 1. Exceeding this voltage rating will not damage the device unless the peak input signal current (1mA) is also exceeded. 2. JA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
PARAMETER INPUT PARAMETERS Input Offset Voltage
TA = 25oC for Equipment Design. Single Supply V+ = 30V, Dual Supply VSUPPLY = 15V, IABC = 100A Unless Otherwise Specified SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
VIO
TA = 25oC TA = 0oC to 70oC
8 70
0.4 1 0.02 0.2 10 110 28.8 0.5 13.8 -14.5 30 4 0.4 1.4 0.68 4 15 18 1.8 1.0 2.6
5.0 7.0 8.0 0.2 0.3 0.50 0.70 12 150 -
mV mV mV A A A A mW dB V V V V MHz kHz % % V V/oC V/V nV/ H z pA/ Hz M pF
Input Offset Voltage Change Input Offset Current
|VIO| IIO
Change in VIO between IABC = 100A and IABC = 5A TA = 25oC TA = 0oC to 70oC TA = 25oC TA = 0oC to 70oC IOUT = 0mA
Input Bias Current
II
Device Dissipation Common Mode Rejection Ratio Common Mode Input Voltage Range
PD CMRR VICR
V+ = 30V (High) V- = 0V (Low) V+ = 15V V- = -15V
27 1.0 12 -14 -
Unity Gain Bandwidth Open Loop Bandwidth at -3dB Point Total Harmonic Distortion (Class A Operation) Amplifier Bias Voltage (Terminal 5 to Terminal 4) Input Offset Voltage Temperature Coefficient Power Supply Rejection 1/F Noise Voltage 1/F Noise Current Differential Input Resistance Differential Input Capacitance
fT BWOL THD
IC = 7.5mA, VCE = 15V, IABC = 500A IC = 7.5mA, VCE = 15V, IABC = 500A PD = 220mW PD = 600mW
VABC VIO/T VIO/V EN IN RI CI f = 10Hz, IABC = 50A f = 10Hz, IABC = 50A IABC = 20A f = 1MHz, V+ = 30V
0.50 -
3-2
CA3094, CA3094A, CA3094B
Electrical Specifications
PARAMETER TA = 25oC for Equipment Design. Single Supply V+ = 30V, Dual Supply VSUPPLY = 15V, IABC = 100A Unless Otherwise Specified (Continued) SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OUTPUT PARAMETERS (Differential Input Voltage = 1V) Peak Output Voltage (Terminal 6) Peak Output Voltage (Terminal 6) Peak Output Voltage (Terminal 8) Peak Output Voltage (Terminal 8) With Q13 "ON" With Q13 "OFF" Positive Negative With Q13 "OFF" With Q13 "ON" Positive Negative VOM+ VOMV OM+ VOMVOM+ VOMV OM+ VOMVCE(SAT) V+ = 15V, V- = -15V, RL = 2k to 15V V+ = 30V, IC = 50mA, Terminal 6 Grounded V+ = 30V hFE CO V+ = 30V, V CE = 5V, IC = 50mA f = 1MHz, All Remaining Terminals Tied to Terminal 4 V+ = 30V, RL = 2k to 30V V+ = 15V, V- = -15V, R L = 2k to -15V V+ = 30V, RL = 2k to GND 26 11 29.95 14.95 16,000 27 0.01 12 -14.99 29.99 0.040 14.99 -14.96 0.17 2 100,000 5.5 17 0.05 -14.95 0.80 10 pF pF V V V V V V V V V A
Collector-to-Emitter Saturation Voltage (Terminal 8) Output Leakage Current (Terminal 6 to Terminal 4) Composite Small Signal Current Transfer Ratio (Beta) (Q12 and Q13) Output Capacitance Terminal 6 Terminal 8 TRANSFER PARAMETERS Voltage Gain
A
V+ = 30V, IABC = 100A, VOUT = 20V, RL = 2k
20,000 86 1650
100,000 100 2200 500 50 0.70
2750 -
V/V dB S V/s V/s V/s
Forward Transconductance to Terminal 1 Slew Rate (Open Loop) Positive Slope Negative Slope
gM SR IABC = 500A, RL = 2k
-
Unity Gain (Non-Inverting Compensated)
IABC = 500A, RL = 2k
-
Schematic Diagram
EXTERNAL FREQUENCY COMPENSATION OR INHIBIT INPUT D3 Q4 Q6 D2 Q5 Q9 DIFFERENTIAL VOLTAGE 2 INPUT DIFFERENTIAL VOLTAGE INPUT AMPLIFIER BIAS INPUT 5 IABC 8 Q1 Q2 Q12 3 Q11 Q10 R2 47k D6 6 "SOURCE" (DRIVE) OUTPUT "SINK" OUTPUT Q13 Q7 D4 Q8 D5 R1 2k 1 7 V+
INPUTS OUTPUT MODE "Source" "Sink" OUTPUT TERM 6 8 INV 2 3 NONINV 3 2
Q3 D1
4
V-
3-3
CA3094, CA3094A, CA3094B Operating Considerations
The "Sink" Output (Terminal 8) and the "Drive" Output (Terminal 6) of the CA3094 are not inherently current (or power) limited. Therefore, if a load is connected between Terminal 6 and Terminal 4 (V- or Ground), it is important to connect a current limiting resistor between Terminal 8 and Terminal 7 (V+) to protect transistor Q13 under shorted load conditions. Similarly, if a load is connected between Terminal 8 and Terminal 7 (V+), the current limiting resistor should be connected between Terminal 6 and Terminal 4 or ground. In circuit applications where the emitter of the output transistor is not connected to the most negative potential in the system, it is recommended that a 100 current limiting resistor be inserted between Terminal 7 and the V+ supply.
1/F Noise Measurement Circuit
When using the CA3094, A, or B audio amplifier circuits, it is frequently necessary to consider the noise performance of the device. Noise measurements are made in the circuit shown in Figure 20. This circuit is a 30dB, non-inverting amplifier with emitter follower output and phase compensation from Terminal 2 to ground. Source resistors (RS) are set to 0 or 1M for E noise and I noise measurements, respectively. These measurements are made at frequencies of 10Hz, 100Hz and 1kHz with a 1Hz measurement bandwidth. Typical values for 1/f noise at 10Hz and 50A IABC are:
EN = 18nV Hz and IN = 1.8pA Hz .
Test Circuits
30V
NOTES:
7 5 2 CA3094 3 100 4 100 8
300k 9.9k
E OUT 3. Input Offset Voltage: VIO = ---------------- . 100 4. For Power Supply Rejection Test: (1) vary V+ by -2V; then (2) vary V- by +2V. 5. Equations: E O UT - E OUT 0 1 (1) V+ Rejection = -----------------------------------------------200 E OUT - E O UT 0 2 (2) V- Rejection = -----------------------------------------------200
6 1 10k 1k 100pF EOUT
1 6. Power Supply Rejection: ( d B ) = 20 log -------------------------------------------- . V REJECTIO N Maximum Reading of Step 1 or Step 2
15V
30V
FIGURE 1. INPUT OFFSET VOLTAGE AND POWER SUPPLY REJECTION TEST CIRCUIT
30V
7 5
RABC 1M 8 7
30V
2 CA3094 3 1 4 1M 0.001F 15V 220 150k EOUT 15V 3 6
300k 5
2
CA3094A + 4
NOTES: 7. PDISSIPATION = (V+)(I)
E OUT 8. I O S = ------------------------------6 VOLTS 10 -------------------AMPS
I NOTE: I = -I 2
FIGURE 2. INPUT OFFSET CURRENT TEST CIRCUIT
FIGURE 3. INPUT BIAS CURRENT TEST CIRCUIT
3-4
CA3094, CA3094A, CA3094B Test Circuits
(Continued)
30V 7 100 2 100 3 VCMR 0.8V TO 27.2V 9.9k 1 1k 200 15V 100pF + 4 10k EOUT 8 4.7k 10k
CA3094 6
NOTES: 9. 100 x 26V CMRR = -------------------------------------------- . E 2OUT - E 1OUT
10. Input Voltage Range for CMRR = 1V to 27V. 100 x 26V CMRR (dB) = 20 log -------------------------------------------- . E 2OUT - E 1OUT
11.
FIGURE 4. COMMON MODE RANGE AND REJECTION RATIO TEST CIRCUIT
+15V +15V IABC 500 10k 3.6k RS (NOTE) 2 5 7 2 8 91 10 3 6 4 RS (NOTE) 1 CC -15V -15V 3k OUTPUT (RMS) 100 10 4 OUTPUT RL = 2k IABC 5 7 -15V 10k +15V RS
CA3094A +
8
CA3094A +
3 120
6
IABC (A) 5 50 500
CCOMP (pF) 0 50 500
NOTE: RS = 1M (1/F Noise Current Test). RS = 0 (1/F Noise Voltage Test).
RS () 56K 560K 56M
IABC (A) 500 50 5
FIGURE 5. 1/F NOISE TEST CIRCUIT
+15V IABC
FIGURE 6. OPEN LOOP GAIN vs FREQUENCY TEST CIRCUIT
+15V
56k 5 7 2V 0V 8 2 13k 3 15k 5 7 2 6 10V 10k 3 4 2k EOUT 220 0.001F -15V
CA3094A +
CA3094A + 1 4
8 6
10k
2k
EOUT
-15V
FIGURE 7. OPEN LOOP SLEW RATE vs IABC TEST CIRCUIT
FIGURE 8. SLEW RATE vs NON-INVERTING UNITY GAIN TEST CIRCUIT
3-5
CA3094, CA3094A, CA3094B Test Circuits
(Continued)
120VAC V+ = 30V +15V RLOAD
R5 56k 5 7 R2 2 R1 3 8 R3 R6 (NOTE 12) D1 S1 2 3
7 8 5 + CA3094A
S2
R1 R2 R3 R4
EOUT
MT2 6
CA3094A + 4 6 OUTPUT 2k
4 R8 MT1
R7
C1
51 RC
1
COMMON
CC
NOTES:
-15V
S1 3 6 29V 0 27V 0 3V
CLOSED LOOP GAIN (dB) 0 20 40
R1 (k) 10 10 1
R2 (k)
R3 (k) 10 10 10
1 0.1
12. C1 = 0.5F D1 = 1N914 R1 = 0.51M = 3 min. R2 = 5.1M = 30 min. R3 = 22M = 2 hrs. R4 = 44M = 4 hrs. R5 = 1.5k R6 = 50k R7 = 5.1k R8 = 1.5k
Time = 1 hr. S2 Set to R 4
13. Potentiometer required for initial time set to permit device interconnecting. Time variation with temperature <0.3%/oC. FIGURE 10. PRESETTABLE ANALOG TIMER
FIGURE 9. PHASE COMPENSATION TEST CIRCUIT
Application Information
For additional application information, refer to Application Note AN6048, "Some Applications of a Programmable Power/Switch Amplifier IC" and AN6077 "An IC Operational Transconductance Amplifier (OTA) with Power Capability". If the desired sensitivity and required input resistance are not known and are to be experimentally determined, or the anticipated equipment design is sufficiently flexible to tolerate a wide range of these parameters, it is recommended that the equipment designer begin his calculations with an IABC of 100A, since the CA3094 is characterized at this value of amplifier bias current. The CA3094 is extremely versatile and can be used in a wide variety of applications.
Design Considerations
The selection of the optimum amplifier bias current (IABC) depends on: 1. The Desired Sensitivity - The higher the IABC, the higher the sensitivity, i.e., a greater drive current capability at the output for a specific voltage change at the input. 2. Required Input Resistance - The lower the IABC, the higher the input resistance.
3-6
CA3094, CA3094A, CA3094B Typical Applications
Z1 Z2 + EOUT (NOTE) EIN CA3094 EOUT (NOTE)
EIN + CA3094
Where EOUT = EIN
NOTE: In single-ended output operation, the CA3094 may require a pull up or pull down resistor. FIGURE 11A. INVERTING OP AMP FIGURE 11B. NON-INVERTING MODE, AS A FOLLOWER
V+ = 18V S1 VOLTAGE A 2/3V+ 0 +18 0 VOLTAGE AT TERMINAL 8 A 1N914 12V C R2 220k 4 3 RABC 220k R II 2 + CA3094 R1 100k 5 7 8
V+ 100 k 0.01F INPUT A B 100 k C 1N914 12VDC 100 k 100 k 2 270 k R1 1M D R2 2.2M 3 B 220k

E OUT Z2 Where ---------------- = f -----E Z IN 1

depends on the characteristics of Z1 and Z2
FIGURE 11. APPLICATION OF THE CA3094 Problem: To calculate the maximum value of R required to switch a 100mA output current comparator 18V 2k Given: I ABC = 5A, R ABC = 3.6M ---------PULL UP 5A II = 500nA at IABC = 100A (from Figure 3) II = 5A can be determined by drawing a line on Figure 3 through IABC = 100A and IB = 500nA parallel to the typical TA = 25oC curve.
EOUT 6
Then: II = 33nA at IABC = 5A R MAX
o 18V - 12V = --------------------------- = 180 M at T = 25 C A 33nA
-
R
MAX
= 180M x 2 3 = 120M at T
A
= - 55 C
o
Ratio of II at TA = 25 oC to II at TA = -55oC for any given value
TIME DELAY (s) = RC (APPROX.)
of IABC
FIGURE 12. RC TIMER
V+ A 0 0 C0 D0 V+ E0 EOUT
3/ V+ 4
7 8 + CA3094 5 6 C1 0.5F E
4 RLOAD 2k
On a negative going transient at input (A), a negative pulse at C will turn "on" the CA3094, and the output (E) will go from a low to a high level. At the end of the time constant determined by C1, R 1, R2, R3, the CA3094 will return to the "off" state and the output will be pulled low by RLOAD. This condition will be independent of the interval when input (A) returns to a high level.
R3 1M
FIGURE 13. RC TIMER TRIGGERED BY EXTERNAL NEGATIVE PULSE
3-7
CA3094, CA3094A, CA3094B Typical Applications
+ +15V 10k MIN R 1M MAX 7 2.7M 3 5VDC 2 C1 0.01F PAPER OR MYLARTM 5 TYPE 1N914 8 510 47k 100k 2 20k 6 4 47k EOUT 1N914 4 C 5 3 + CA3094 7 8 OUTPUT 1k
(Continued)
CA3094 +
6
330k C
2ms EOUT 120s
NOTES: 14. R = 1M, C = 1F. 15. Time Constant: t RC x 120. 16. Pulse Width: K(C1/C).
CURRENT INPUT OR VOLTAGE INPUT R
LINE
FIGURE 14. FREE RUNNING PULSE GENERATOR
FIGURE 15. CURRENT OR VOLTAGE CONTROLLED OSCILLATOR
15V
1k R2 51k 30V R 100k 27k 300k 100k 50k RP R 100k 2 27k 3 C 560pF 4 5 7 8 + CA3094A -15V LED R1 4.3k C 510 2 5 7 8 + CA3094A 3 1000pF 4 300k OUTPUT fOUT 5kHz
6
6
1 If: R 2 = 3.08R1, f OUT = -------RC FIGURE 17. DUAL SUPPLY ASTABLE MULTIVIBRATOR
FIGURE 16. SINGLE SUPPLY ASTABLE MULTIVIBRATOR
3-8
MylarTM is a trademark of E.I. Dupont de Nemours


-
1 NOTE: f OUT = --------------------------------------------------2R 1 ( 2RC ) ln ---------- + 1 R2
CA3094, CA3094A, CA3094B Typical Applications
(Continued)
+15V 150k +15V 300k INPUT 2k 5 R (NOTE 17) 51k INPUT 3 7 8 OUTPUT RA 200k 2 RB 200k R1 100k -15V 51k 3 5 7 8 OUTPUT 2k
CA3094 + 6 4
CA3094A + 6 4
2 R1 100k R2 100k
NOTES: 19. RB Upper Threshold = [ V+ ] ----------------------------------------R1 RA --------------------- + R B R1 + RA

.
NOTES: 17. 18. R 1 R2 R = -------------------- . R1 + R2 R1 Threshold = [ Supply ] -------------------- . R1 + R2 20. R1 RB --------------------R1 + RB Lower Threshold = [ V+ ] ----------------------------------------- . R1 RB --------------------- + R A R1 + RB FIGURE 18B. SINGLE SUPPLY
FIGURE 18A. DUAL SUPPLY
FIGURE 18. COMPARATORS (THRESHOLD DETECTORS) DUAL AND SINGLE SUPPLY TYPES
TYPE D1201F PTC TEMP. SENSOR 10 117V 60Hz 26V 60Hz +
1.5M
1N914
HEATER 330k 68k 7 5 10k TEMP. SET 2 1N914 3 CA3094 8 6 G MT1 1.5k MT2 1k 0.01F
-
50F 50V
75k
R 75k
75k
4
FOR NTC SENSOR, INTERCHANGE POSITION OF SENSOR AND R .
NOTE: All Resistors are 1/2W.
FIGURE 19. TEMPERATURE CONTROLLER
3-9
CA3094, CA3094A, CA3094B Typical Applications
2 V+ INPUT (NOTE 21) 3 4 REF. 1.6V 6 7 R 5k 0.01F 10k
(Continued)
NOTE 23
CA3085A VOLTAGE REG.
1 5.6 8 +15V REG. OUTPUT
NOTES:
0.0056F
21. V+ Input Range = 19V to 30V for 15V output.
1.5k COMMON RETURN 200k
22. V- Input Range = -16V to -30V for -15V output. 23. Max IOUT = 100mA. 24. Regulation: V OUT Max Line = ----------------------------------------------------------- x 100 = 0.075% V [V ( Initial ) ]V OUT IN
100
1 5 7 0.03F
5.1k 2 + CA3094A 3
6 4
V O UT Max Load = --------------------------------------- x 100 = 0.075% V OUT VOUT ( Initial ) (IL from 1mA to 50mA)
8 -15V REG. OUTPUT 10k 1%
V- INPUT (NOTE 22) 10k 1%
FIGURE 20. DUAL VOLTAGE TRACKING REGULATOR
36V 1mA ILOAD 3 33k +3V RTRIP 200mV RANGE 200 3.3 k 5 R 47k (NOTE 27) L C 0.02F C2 0.1F (NOTE 28) 47k 3 100k 2 7 IABC 10A 3.3M IA 20A 100 VOLTS
CIRCUIT TRIPS ON POSITIVE PEAKS WILL SWITCH WITHIN 1.5 CYCLES VOLTAGE BETWEEN TERMINALS 2 AND 4 VOLTAGE BETWEEN TERMINALS 3 AND 4 (ADJUSTABLE WITH RTRIP) 60mV TYPICAL GROUND FAULT SIGNAL 60Hz
t
CA3094B + 6 4 8 CIRCUIT BREAKER CONTROL SOLENOID
NOTES: 25. Differential current sensor provides 60mV signal 5mA of unbalance (Trip) current. 26. All Resistors are 1/2 Watt, 10%. 27. RC selected for 3dB point at 200Hz. 28. C2 = AC bypass. 29. Offset adj. included in R TRIP . 30. Input impedance from 2 to 3 = 800k.
1k
0.001F
31. With no input signal Terminal 8 (output) at 36V.
FIGURE 21. GROUND FAULT INTERRUPTER (GFI) AND WAVEFORMS PERTINENT TO GROUND FAULT DETECTOR
3-10
CA3094, CA3094A, CA3094B Typical Applications
TREBLE "BOOST" (CW) 15k 0.12F 1800 68 0.001F 0.001F 5F + 5600 220 1W 220 1W 15F + Q2 2N6292 2N6292 V"CUT" (CCW) 0.01F 820 + 4700F
(Continued)
D1 - D4 1N5391 V+ D1 D2 D3 D4 3H 120V 60Hz STANCOR NO. P-8609 OR EQUIVALENT (120VAC TO 26.8VCT AT 1A)
+
INPUT VOLUME C1 (NOTES 32, 33) R1 2 + CA3094B 3 8 6 4 5 680 k 0.2F 0.02F 1k "BOOST" 100k (CW) BASS "CUT" (CCW) 10k C2 0.47F 0.47 F 1 8 LEAD TO-5 THERMAL COMPENSATION NETWORK 30 7 1 27 Q3 6.8pF Q1 0.47 0.47 2N6107
4700 F
330
22
-
47
RL 8 R2 1.8M (NOTES 32, 33)
OPTIONAL THERMAL
COMPENSATION NETWORK
25F +
8.2 1N5391
JUMPER (NOTES 32, 33)
TYPICAL PERFORMANCE DATA FOR 12W AUDIO AMPLIFIER CIRCUIT Power Output (8 load, Tone Control Set at "Flat") Music (at 5% THD, Regulated Supply). . . . . . . . . . . . . . . . . . 15W Continuous (at 0.2% IMD, 60Hz and 2kHz Mixed in a 4:1 Ratio, Unregulated Supply) See Figure 8 in AN6048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12W Total Harmonic Distortion At 1W, Unregulated Supply . . . . . . . . . . . . . . . . . . . . . . . . . 0.05% At 12W, Unregulated Supply . . . . . . . . . . . . . . . . . . . . . . . .0.57% Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40dB Hum and Noise (Below Continuous Power Output). . . . . . . . . .83dB Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250k Tone Control Range . . . . . . . . . . . . . . . . . .See Figure 9 in AN6048 NOTES: 32. For standard input: Short C2; R1 = 250k, C1 = 0.047F; remove R2. 33. For ceramic cartridge input: C1 = 0.0047F, R1 = 2.5M, remove jumper from C2; leave R2 .
FIGURE 22. 12W AUDIO AMPLIFIER CIRCUIT FEATURING TRUE COMPLEMENTARY SYMMETRY OUTPUT STAGE WITH CA3094 IN DRIVER STAGE
3-11
CA3094, CA3094A, CA3094B Typical Performance Curves
5 4 INPUT OFFSET VOLTAGE (mV) 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 0.1 1 10 100 AMPLIFIER BIAS CURRENT (A) 1000 0.01 0.1 1.0 10 100 1000 70oC 90oC 125oC 70oC 25oC -55oC 25oC -55oC V+ = +15V, V- = -15V INPUT OFFSET CURRENT (nA) 125 oC 90 oC 103 V+ = +15V, V- = -15V
102
101
1
0.1
-55oC 25 oC 125 oC
AMPLIFIER BIAS CURRENT (A)
FIGURE 23. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5)
FIGURE 24. INPUT OFFSET CURRENT vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5)
10 4
V+ = +15V, V- = -15V
105
TA = 25 oC
INPUT BIAS CURRENT (nA)
DEVICE DISSIPATION (W)
10 3
104
10 2 125oC 25oC -55oC
103 V+ = +15V, V- = -15V V+ = +6V, V- = -6V V+ = +3V, V- = -3V
10 1
3
102
1.0 0.88A 0.1 0.1
101
1
10
100
1000
1 0.1
AMPLIFIER BIAS CURRENT (A)
1.0 10 100 AMPLIFIER BIAS CURRENT (A)
1000
FIGURE 25. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5)
FIGURE 26. DEVICE DISSIPATION vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5)
104 AMPLIFIER SUPPLY CURRENT (A)
15.0 COMMON MODE INPUT VOLTAGE (V) V+ = +15V, V- = -15V TA = 125oC 25oC -55oC 14.5 14.0 13.5 13.0 0 -13.0 -13.5 -14.0 -14.5
V+ = +15V, V- = -15V TA = 25oC V+CMR
103
102
101
125 oC
1.0
25 oC -55 oC 1.0 10 100 1000
V-CMR
0.1 0.1
-15.0 0.1
AMPLIFIER BIAS CURRENT (A)
1.0 10 100 AMPLIFIER BIAS CURRENT (A)
1000
FIGURE 27. AMPLIFIER SUPPLY CURRENT vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5)
FIGURE 28. COMMON MODE INPUT VOLTAGE vs AMPLIFIER BIAS CURRENT (IABC, TERMINAL 5)
3-12
CA3094, CA3094A, CA3094B Typical Performance Curves
50 45 1/F NOISE VOLTAGE (nV/Hz) 40 35 30 25 500A 20 50A 15 10 101 0.1 101 IABC = 5A V+ = +15V, V- = -15V RS = 0, TA = 25 oC FOR TEST CIRCUIT, SEE FIGURE 20
(Continued)
100 V+ = +15V, V- = -15V RS = 1M, TA = 25oC FOR TEST CIRCUIT, SEE FIGURE 20
1/F NOISE CURRENT (pA/Hz)
10 IABC = 500A
1.0 5A
50A
10 2 FREQUENCY (Hz)
10 3
102 FREQUENCY (Hz)
103
FIGURE 29. 1/F NOISE VOLTAGE vs FREQUENCY
FIGURE 30. 1/F NOISE CURRENT vs FREQUENCY
10000
1000
COMPOSITE DC BETA (Q12, Q13)
FORCED BETA = 10 TA = 25oC
1000
V+ = 20V, VCE = 10V TA = 25oC
COLLECTOR-TO-EMITTER SATURATION VOLTAGE (mV)
100
100
10
10 1 10 100 COLLECTOR CURRENT (mA) 1000
1 1 10 100 COLLECTOR CURRENT (mA) 1000
FIGURE 31. COLLECTOR EMITTER SATURATION VOLTAGE vs COLLECTOR CURRENT OF OUTPUT TRANSISTOR (Q13)
110 100 OPEN LOOP VOLTAGE GAIN (dB) 90 80 70 60 50 40 30 20 10 0 -10 1 101 102 103 10 4 105 10 6 107 FREQUENCY (Hz) V+ = +15V, V- = -15V, RL = 2k (TERMINAL 6 TO V-), TA = 25 oC FOR TEST CIRCUIT, SEE FIGURE 21 PHASE ANGLE (IABC = 500A) 5A 0 -50 -100 -150 -200 50A PHASE ANGLE (DEGREES) IABC = 500A
FIGURE 32. COMPOSITE DC BETA vs COLLECTOR CURRENT OF DARLINGTON CONNECTED OUTPUT TRANSISTORS (Q12, Q13)
105 FORWARD TRANSCONDUCTANCE (S) V+ = +15V, V- = -15V
104
103
102
101
-55oC 25oC 125oC
1 0.1
1.0 10 100 AMPLIFIER BIAS CURRENT (A)
1000
FIGURE 33. OPEN LOOP VOLTAGE GAIN vs FREQUENCY
FIGURE 34. FORWARD TRANSCONDUCTANCE vs AMPLIFIER BIAS CURRENT
3-13
CA3094, CA3094A, CA3094B Typical Performance Curves
100 V+ = +15V, V- = -15V, TA = 25oC FOR TEST CIRCUIT, SEE FIGURE 22
(Continued)
100
V+ = +15V, V- = -15V, IABC = 500A, TA = 25oC FOR TEST CIRCUIT, SEE FIGURE 23
SLEW RATE (V/s)
10
SLEW RATE (V/s) 1 10 100 1000
10
1.0
1.0
0.1 AMPLIFIER BIAS CURRENT (A)
0.1 0 20 40 60 80 100 CLOSED LOOP VOLTAGE GAIN (dB)
FIGURE 35. SLEW RATE vs AMPLIFIER BIAS CURRENT
FIGURE 36. SLEW RATE vs CLOSED LOOP VOLTAGE GAIN
PHASE COMPENSATION CAPACITANCE (pF)
1000
100
80 60 40 20
CC
1000 800
10
8 6 4 2
RC
600 400 200
1 0 10 20 30 40 50 60 70 CLOSED LOOP VOLTAGE GAIN (dB)
FIGURE 37. PHASE COMPENSATION CAPACITANCE AND RESISTANCE vs CLOSED LOOP VOLTAGE GAIN
3-14
PHASE COMPENSATION RESISTANCE ()
V+ = +15V, V- = -15V, IABC = 500mA, TA = 25oC 100mV OUTPUT SIGNAL WITH 10% OVERSHOOT FOR PHASE COMPENSATION TEST CIRCUIT, SEE FIGURE 24


▲Up To Search▲   

 
Price & Availability of CA309400

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X